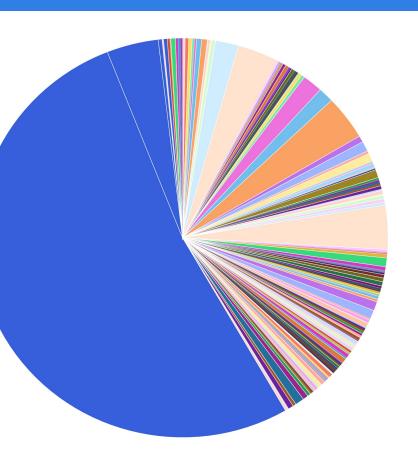
BIOMEDVALLEY D I S C O V E R I E S

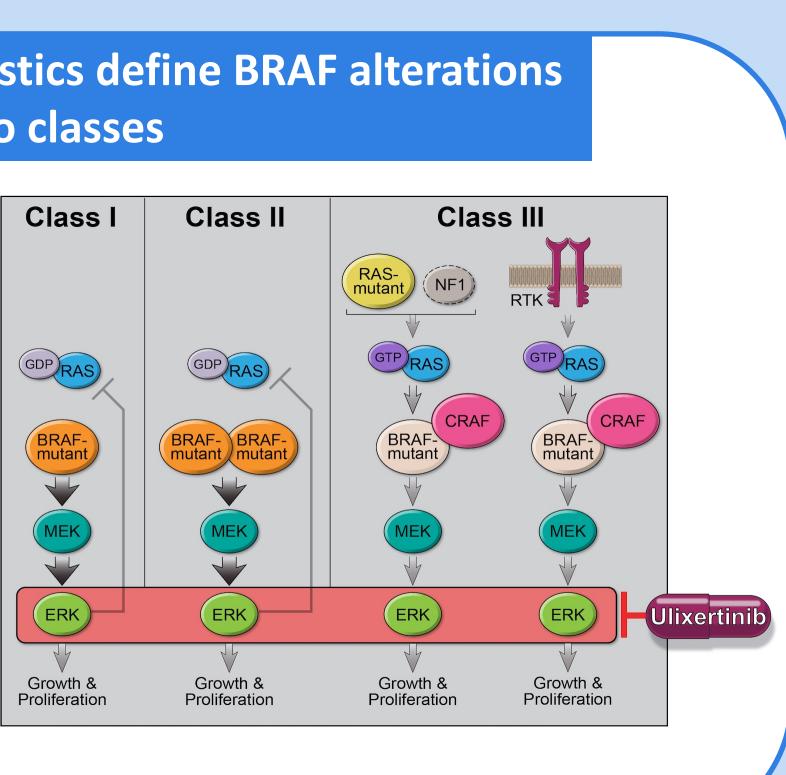
Background


- Atypical BRAF (non-V600) alterations comprise approximately 50% of all BRAF mutations in cancer and can be categorized according to characteristics of molecular signaling (either Class II or III).
- Atypical BRAF alterations are rare (approximately 3% across all human cancers) and there are currently no approved therapies for this indication.
- As next-generation sequencing becomes standard clinical practice, oncologists are frequently identifying atypical BRAF alterations in their patients' tumors.
- The efficacy of the first-in-class ERK1/2 inhibitor, ulixertinib (BVD-523), was assessed across 10 patientderived xenograft (PDX) models, which harbored class II or III BRAF alterations.
- RNA-sequencing was performed on tumors from the vehicle-treated and ulixertinib-treated groups to identify potential proctors of ulixertinib response.

1. Atypical BRAF alterations comprise ~ 50% of all **BRAF cancer associated aberrations**

Any Atypical BRAF alteration

BRAF V600E/K/R

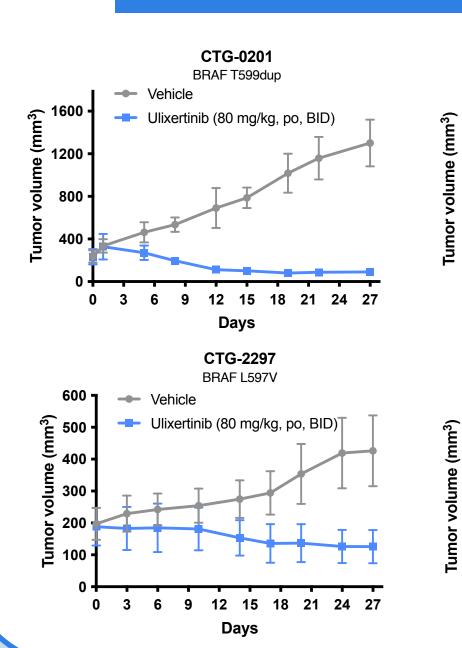

MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017) (Sample set n=**10945**)

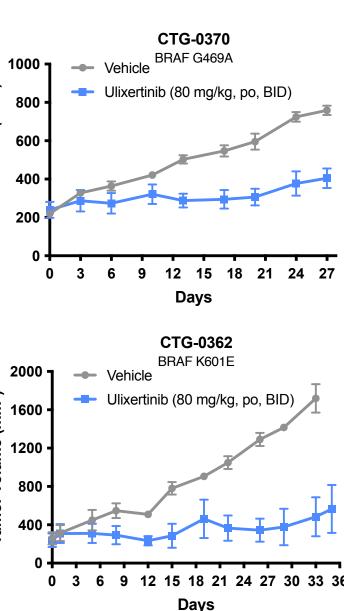
- The MSK-IMPACT Clinical Sequencing Cohort was utilized to investigate incidence of BRAF alterations across cancer types (sample n=10945).
- Approximately half of all BRAF alterations were non-V600.
- There are approximately 180 non-V600 BRAF alterations within this dataset.
- There are currently no approved targeting agents for patients with tumors harboring atypical BRAF alterations

2. Molecular characteristics define BRAF alterations into classes

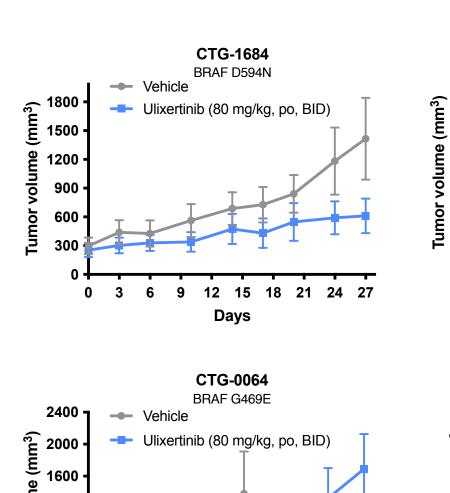
- BRAF alterations can be categorized based on characteristics of signaling^{1-2.}
- Class I BRAF alterations (V600 point mutations) signal in a RAS independent manner. Approved therapies are available for this class of BRAF alteration.
- Class II signal as RAS independent, mutantmutant BRAF dimers.
- Class III favor binding CRAF and RAS to signal as mutant-BRAF plus wild-type CRAF dimers.
- Ulixertinib (ERK1/2 inhibitor) inhibits signaling downstream of all classes of BRAF alterations.
- Driven by high-unmet medical need, these studies are focused on Class II and III BRAF alterations.

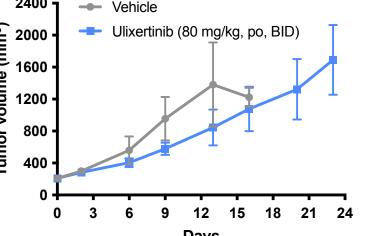
3. Ulixertinib is a potent and selective ERK1/2 inhibitor **Rapid Onset Highly Selective ATP-Competitive** Potent 2,000 ATP (µmol/L) Incubation time (min) BVD-523 (nmol/L Target Engagement and Inhibition (pRSK) --ERK2 0 30 150 2000 0 30 150 20 -- pERK2 -p38α PERK ===== Ulixertinib is a potent and selective ATPpRSK ____ competitive inhibitor of $ERK1/2^3$. USP6 ==== EEE Actin -----• Ulixertinib activity in patients with tumors -----• Binds both ERK and pERK harboring alterations within the MAPK pathway 0.1 • Inhibition of ERK substrates e.g., pRSK, Ulixertinib (µmol/L) has been previously described⁴. • Inhibited ERK is hyperphosphorylated

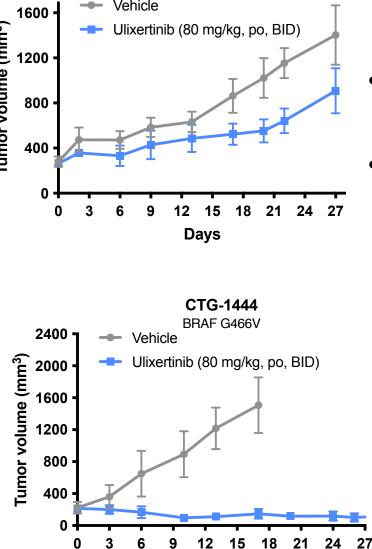

ERK1/2 Inhibitor Ulixertinib Demonstrates Activity in Atypical (non-V600) BRAF Mutant Models Deborah Knoerzer¹, Anupama Reddy², Adnan Derti², Caroline M. Emery¹


¹BioMed Valley Discoveries, Kansas City, MO. ²Vindhya Data Science Inc., Morrisville, NC

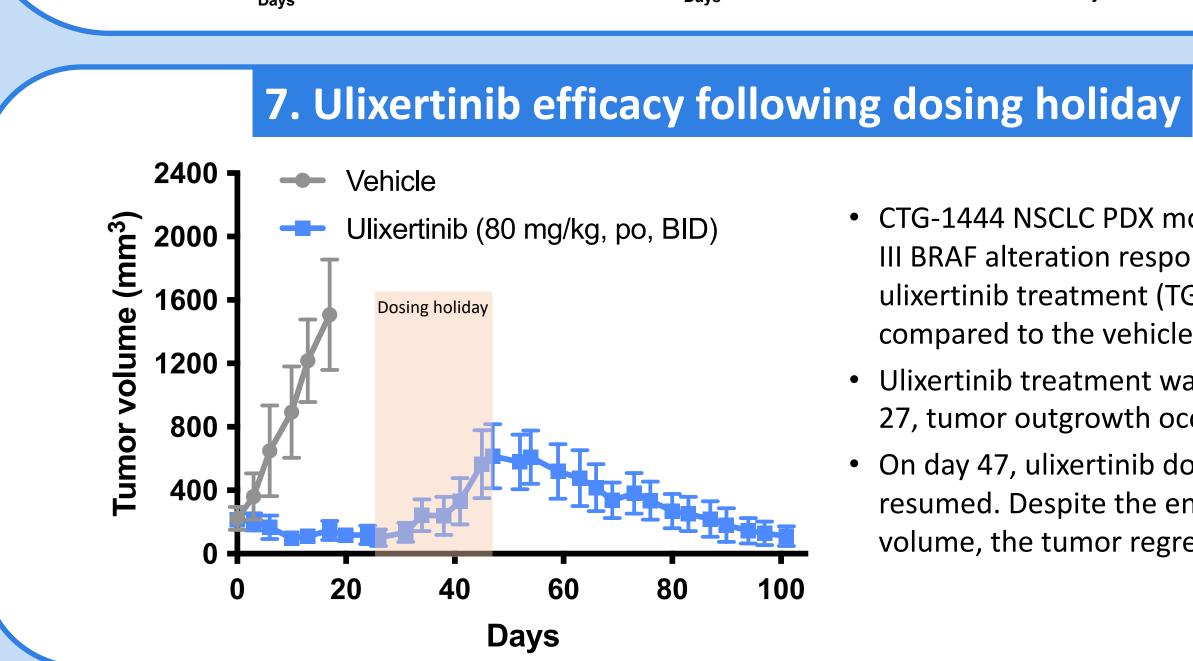
4. Characteristics of Class II and III PDX models


Model	Tumor type	Patient Prior Treatment (Response)	Disease Stage	Mutations	BRAF Alteration Class
CTG-0201	Melanoma	Temozolomide (not available)	IV	BRAF T599dup	II
CTG-0282	Pancreatic	Erlotinib, Sorafenib, Oxaliplatin, Carboplatin/Paclitaxel, Gemcitabine, Irinotecan (not available)	IV	BRAF G469A	Ш
CTG-0362	Melanoma	Not available	IV	BRAF K601E	П
CTG-0370	Hepatocellular carcinoma (HCC)	Not available	Not Available	BRAF G469A	Ш
CTG-2297	Endometrial	Carboplatin/Paclitaxel (responded; 8 months), Lurbinectedin/Paclitaxel (Mixed response), Docetaxel (No response), Topotecan/Bevacizumab (Responded; 4 months), Trametinib (not available)	I	BRAF L597V	II
CTG-0064	Colorectal	5-Fluorouracil/Oxaliplatin (not available)	II	BRAF G469E	Ш
CTG-0165	NSCLC	Carboplatin/Docetaxel (no response)	IV	BRAF N581I	Ш
CTG-1444	NSCLC	Carboplatin/Nab-paclitaxel (responded; duration 3 months)	IV	BRAF G466V	Ш
CTG-1684	Breast	Gemcitabine (not available)	Not Available	BRAF D594N	Ш
CTG-1501	Melanoma	Not available	Ш	BRAF G469E	Ш
				BRAF P367L	П


5. Ulixertinib efficacy in Class II BRAF mutant PDX models

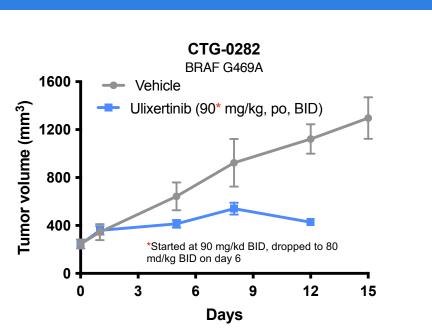


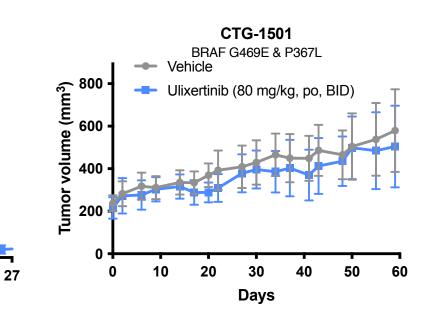
6. Ulixertinib efficacy in Class III BRAF mutant PDX models



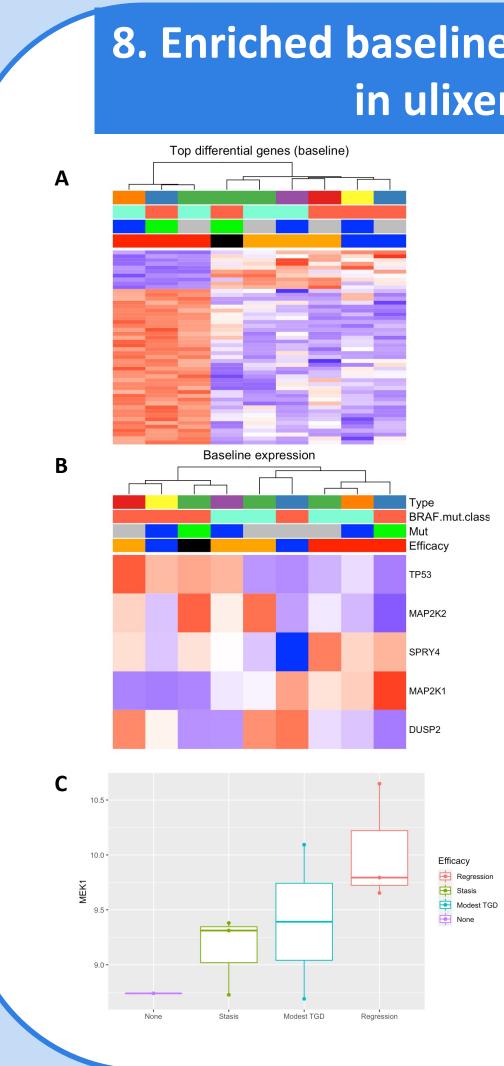
CTG-0165

BRAF N5811




KinomeScan ulixertinib at 50 nM ERK1 and ERK2 are

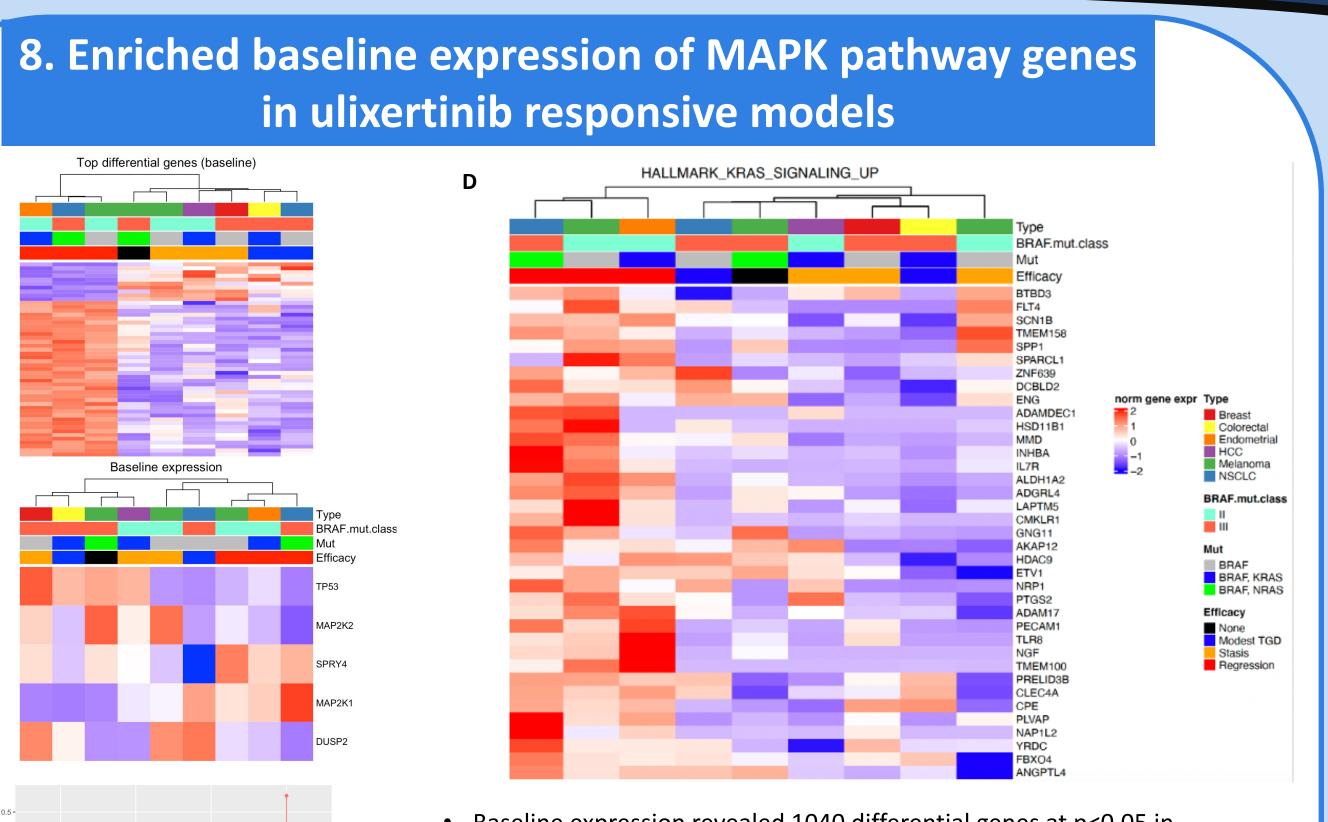
- 10 Patient Derived Xenograft (PDX) models selected representing a range of tumor types.
- Each model harbors an atypical BRAF (non-V600) alteration.
- Five models with Class II alterations, 4 with Class III, and 1 with both a Class II and Class III.
- Presence of mutant BRAF alleles was readily confirmed from RNA-seq data in all PDX models



- Ulixertinib resulted in tumor regression in CTG-0201 (melanoma), and CTG-2297 (Endometrial).
- Ulixertinib resulted in overall response of statis in 3 models: CTG-0370 (HCC), CTG-0282 (pancreatic), CTG-0362 (melanoma).

- Ulixertinib resulted in modest tumor growth delay in CTG-1684 (Breast), CTG-0165 (NSCLC) and CTG-0064 (CRC).
- Ulixertinib resulted in tumor regression in CTG-1444 (NSCLC).
- Ulixertinib demonstrated no activity in melanoma model CTG-1501 (both Class II and III BRAF mutations present).

- CTG-1444 NSCLC PDX model with a Class III BRAF alteration responded robustly to ulixertinib treatment (TGI > 100%) compared to the vehicle control group.
- Ulixertinib treatment was stopped on day 27, tumor outgrowth occurred.
- On day 47, ulixertinib dosing was resumed. Despite the enlarged tumor volume, the tumor regressed.


9. Cell cycle, apoptosis, and metastasis gene sets are regulated in ulixertinib responsive models

- Expression levels in vehicle treated samples were compered to ulixertinib treated samples to reveal differentially expressed gene sets perturbed by treatment
- Cell cycle gene sets were decreased in ulixertinib responsive models (A). Combining ulixertinib with a CDK4/6 inhibition is hypothesize to increase magnitude and/or duration of response (see **Abstract #1057**).
- Apoptosis signaling was increased in the responsive models (B).
- Metastasis down-regulation (C) gene sets were enriched in responsive models.
- conversely metastasis and cell cycle gene sets were decreased.
- trial (NCT03454035)).

- 2015. 28(3): p. 370-83. 19.
- (Ulixertinib). Mol Cancer Ther. 2017 Nov;16(11):2351-2363.
- and expansion study. Cancer Discov. 2018;8(2):184-195.
- Champions Oncology for PDX experiments
- Mark Miller (Stowers Institute for Medical Research, Kansas City, MO) for pathway illustrations.
- Corporation, © DISCOVERX CORPORATION 2010.

Abstract #4022

- Baseline expression revealed 1040 differential genes at p<0.05 in ulixertinib responsive models (A).
- Genes of interest include components of the MAPK pathway and p53 (B).
- MEK1 (MAP2K1) expression was significantly higher at baseline in models responsive to ulixertinib (regression) (C).
- Gene set enrichment revealed hallmark KRAS signaling was enriched at baseline in models with ulixertinib regression (D).

Conclusions

Monotherapy ulixertinib is efficacious in PDX models harboring atypical BRAF alterations (Class II and Class III). Robust regression to moderate tumor growth delay were observed in 9/10 models.

Gene expression analysis showed enriched MAPK pathway expression at baseline in ulixertinib responsive models compared to the non-responders. EMT gene set was enriched in ulixertinib responsive models,

Exploring rational ulixertinib combinations may increase magnitude and/or duration of response (e.g., CDK4/6 inhibition (see Abstract #1057); this combination is currently under clinical evaluation in a phase I

Ulixertinib has FDA Fast Track designation for patients with solid tumors, other than colorectal cancers, harboring specific atypical BRAF mutations: G469A/V, L485W, and L597Q. Ulixertinib is currently under clinical evaluation in patients with tumors harboring any atypical BRAF alteration (NCT04488003)

References

Yaeger et al, 2019. Targeting Alterations in the RAF–MEK Pathway. Cancer Discov 2019;9:329-341. Epub 2019 Feb 15. DOI: 10.1158/2159-8290.CD-18-1321. Yao et al, 2015. BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell,

Germann et al, 2017. Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523

Sullivan et al, 2018. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: Results of a phase I dose-escalation

Acknowledgments

BioMed Valley Discoveries for activities related to ulixertinib development (Anna Groover, Martin Teresk, Brent Kreider, Jessica Box, Lisa Lassise).

For Kinome selectivity data: Image generated using TREE*spot*[™] Software Tool and reprinted with permission from KINOME*scan*[®], a division of DiscoveRx